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Summary 

If specially oriented relativistic jets are a defining characteristic of BL Lac objects as a class, then 
several consequences follow unavoidably. First, the observed emission is relativistically boosted and 
may in fact represent only a small fraction of the emitted luminosity of the source. This tends to hide 
the identity of the "parent population" (those objects with misdirected jets) since intrinsic characteristics 
may be swamped by the boosted radiation. Second, the parent population must be relatively numerous 
since only a small fraction of randomly oriented jets would point toward us. In many cases, this has 
been used in a nGve way to comment on possible parent populations for BLLac objects (and to argue, 
erroneously, against the beaming hypothesis). Third - the point stressed in this paper - the observed 
luminosity distribution of BLLac objects depends on both the luminosity function (LF) of the parent 
population and the properties of the jet (its speed and orientation). For simple power-law parent LFs, 
the shape of the LF for the beamed objects is a distinctive broken power-law which is very flat at low 
luminosities. For more complicated parent LFs, the beamed LF will still be at least as flat at the low 
luminosity end. 

The flatness of the luminosity function has important consequences for the first two points above 
and for the  beaming theory as a whole: the shape of the luminosity function can bc used to confirm or 
refute the theory, and perhaps to identify the  parent population. For flux-limited samples, the different 
shapes of the parent and beamed LFs must be incorporated in any discussion of the identity of the 
parent population. Even if the luminosity function cannot be determined accurately because of the lack 
of complete redshift information (redshifts being, by definition, difficult to measure in BLLac objects), 
beaming still predicts that the more readily observable lo@-logs distribution will be very flat, with or 
without evolution. A qualitative comparison with available estimates of optical and X-ray luminosity 
functions and number counts of BLLac objects supports the beaming model. 

I. Introduction 

No one needs reminding that BLLac objects are difficult to find. To date, radio and X-ray surveys 
have discovered the most BLLacs but their yield is relatively small (see papers by Maccacaro et al. and 
Stocke et a[., these proceedings). Optical searches, including a large-area polarization search (see B. 
Jannuzzi's paper, these proceedings), have been even less successful. In the ten years since the last 
BLLac conference, the number of catalogued quasars increased by a factor of -10 (to a few thousand) 
while the number of known BLLac objects amounts to only -110-140. barely twice the number 
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discussed in Pittsburgh. What few complete, flux-limited samples do exist are very small, making sta- 
tistical studies very difficult. 

Nonetheless, considerable advances in our understanding of BLLac objects have been made dur- 
ing the past ten years. It has become clear that relativistic beaming is a good explanation for the BLLac 
phenomenon, accounting for rapid variability, high polarization, and the Compton catastrophe, provided 
that one can successfully explain the physics of jet formation, collimation, propagation, energetics, etc. 
The obvious question then becomes, what are the unbeamed (parent) objects? What do they look like 
when pointed away from the line of sight and how many of them are there? Is there a population con- 
sistent in unbeamed properties and in numbers with the known BLLac population? 

rapidly moving source can be orders of magnitude higher than the flux emitted in the rest-frame (i.e.. 
the flux that would be observed if the source were at rest with respect to the observer): Fh = PFk, 
where S=[y(l-j3cose)]-' is the kinematic Doppler factor corresponding to velocity j3c at an angle 8 to 
the line of sight and p =  3+a for comparisons of flux density and a power law spectrum with index a. 
For a Lorentz factor y=5, sources with 8535' will have Doppler factors in the range 1-10, and for a 
reasonable spectral index (a-1). their apparent brightness will be enhanced by as much as lo4. There- 
fore, if beaming is what makes BLLac objects look like BLLac objects, the consequences for population 
statistics are very severe. 

Estimates of the volume density required for the parent population have been made by a number 
of authors. Some have tried to compensate for the effects of beaming (Schwartz and Ku 1983, Browne 
1983, Perez-Fournon and Biermann 1984) while others use unbeamed luminosity (e&, host galaxy 
magnitude or large-scale symmetric radio luminosity) as a fiducial comparison between parents and 
BLLacs (see papers by Browne and by Ostriker, this volume). The latter approach, while certainly 
correct, cannot be used for any flux-limited sample because it ignores the selection bias introduced by 
beaming. (One can still argue, as did Ostriker in his talk, that there are too few bright elliptical galaxies 
to hide the unbeamed BLLacs; see discussion section at the end of this paper.) Because we are 
interested in well-defined, flux-limited samples, we concern ourselves here with the total (beamed plus 
unbeam ed) luminosity. 

Those papers that did consider the effects of beaming dealt with volume density integrated over 
luminosity, thereby missing the important aspect that the luminosity distribution of beamed objects is 
different from the parent distribution (Urry and Shafer 1984). In fact, for a single power law parent 
LF, the beamed LF is a broken power law, extremely flat at low luminosities and steepening to the 
parent slope at high luminosities. The derivation of this result is described briefly in $2. 

The ratio of volume densities is therefore a function of luminosity. One cannot make meaningful 
numerical comparisons between parents and beamed objects without knowing the shape of both 
[observed] LFs. The full, intrinsic redshift distributions of parents and BLLacs are obviously the same, 
so in any flux-limited sample the ratio of beamed objects to parents depends on where the luminosity 
distributions intersect. The effect is more important for steeper parent LFs because the slope of the 
beamed LF at low luminosities is always flat (it depends only on the strength of the beaming). 

When Urry and Shafer (1984) first derived this result, the hope was that the luminosity function 
of BLLac objects could be compared to the luminosity functions of potential parent populations. 
Unfortunately, the available estimates of BLLac LFs (VCron 1979, Schwartz and Ku 1983, Urry 1984, 
Maccacaro et af. 1984), which we discuss in 83, are really only lower bounds to the true LF because the 
samples are not well-defined and redshift information is badly incomplete. The observed LF slopes are 
apparently very flat but whether this is due to beaming or to incompleteness is impossible to know. 

A more promising approach is to look at the lo@-logs (number counts versus flux) distribution 
for a completely identified, flux-limited sample. This has the advantage of not requiring redshift infor- 
mation, although partial redshift distributions provide an additional constraint on the underlying LF. 

The effect of relativistic beaming on observed intensity is dramatic. The flux observed from a 
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Recent X-ray results indicate that the lo@-logs distribution for BLLac objects is unusually flat (see 
Maccacaro et al., this conference), flatter than Euclidean, and much much flatter than the quasar distri- 
bution. In §4 we show briefly how a flat LF can lead directly to a flat lo@-logs. In the near future we 
plan to fit the recently available radio and X-ray counts using a beamed LF. With the added constraint 
of partial redshift information, we should be able to put useful constraints on the parent luminosity 
function. 

2. The Observed LF Derived from Beaming a Parent LF 

2.1 Jets Randomly Oriented on the Sky 

Suppose we have a parent population of relativistic jets with a known intrinsic luminosity func- 
tion, t$(l), where 1 is the luminosity emitted isotropically in the rest frame of the jet. Now let the jets 
be randomly oriented on the sky so that only a few are pointing toward us. Of course these (which we 
call "beamed") will have greatly enhanced intensities and will be preferentially detected with respect to 
those jets pointing away (which we call "unbeamed"). To find the relative numbers of beamed and 
unbeamed sources seen, we derive the observed luminosity function, Q(L ), where L = 6 P l  is the 
observed luminosity, 6 is the Doppler factor defined earlier, and the exact value of p (-3-5) depends 
on the shape of the emitted spectrum and a number of other factors (whether 1 refers to mono- 
chromatic luminosity or luminosity integrated over a fixed bandwidth, whether injection or reaccelera- 
tion of electrons occurs in a synchrotron source, etc.). For the present calculation (described in greater 
detail by Urry and Shafer 1984) we assume that all jets have the same relativistic velocity so that 6 
depends only on 8. The random distribution of angles on the sky then translates directly into a proba- 
bility of observing a given value of the Doppler factor: 

assuming jets are two-sided. For a fixed jet luminosity 1 ,  the probability of observing luminosity L is 

For any differential parent LF $ ( I ) ,  the observed LF will be 

d j ( L ) = j  d l + ( I ) P ( L  11) . ( 3) 

As an example, consider a delta-function intrinsic LF, Le. all jets have emitted, rest-frame lumi- 
nosity lo .  The observed luminosity function of all beamed jets will simply follow the probability distri- 
bution of Equation 2, a power law in observed luminosity L with slope (p+l)lp. Figure 1 shows the 
integral LF, L x Q ( L  ), normalized to the fiducial luminosity 10 and to the total number of parent jets. 
It looks like a very flat incline - and the integral slope is only 0-0.5 for a wide range of values for p - 
with abrupt upper and lower cutoffs that depend on 6. The upper cutoff is the highest luminosity to 
which jets can be beamed, L , , x = 6 ~ , x l o  where S,,,=6(Oo)= 2y. (The value used in Fig. 1 is y=5.) 
Other jets are beamed away and so have reduced observed luminosities, between lo  and Lmi,=6gi ,  lo, 
where amin= 6(90°) = y-'. If we restrict our attention to those beamed jets whose intensity is Doppler 
boosted (Le. those at angles 0c 8, where &e,)= 1). then the observed LF lies between lo  and Si,, lo  
(the dashed line in Fig. 1). 

If the intrinsic LF is instead a simple power law between 1 ,  and 12 ,  
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the integral in Equation 3 can still be done analytically (with careful attention to the limits of integra- 
tion; see Urry and Shafer 1984). The result is a broken power law LF for the beamed objects, flat at 
the low-luminosity end, steepening to the original (intrinsic) power law slope above luminosity i j , Q l  
(Fig. 2a). This is easy to visualize as the superposition of the flat trapezoids in Figure 1. Again, we can 
separate the beamed population into two parts, those with 8< 8, (enhanced intensity) and €i> 8, 
(diminished intensity). This result is shown in Figure2b for an intrinsic differential LF slope of p=2.75 
and for the same jet parameters as before (y=5 and p=4). 

2.2 Jets plus Isotropic, Unbeamed Component 

The calculation we just did is unrealistic because one does not expect to find isolated jets. Radio 
interferometric maps of jets generally show some additional component that is approximately sym- 
metric, often brighter, and presumably isotropic and unbeamed. In order to account for the contribution 
of the unbeamed component (1,) to the total observed luminosity ( L T ) ,  we assume the intrinsic jet 
luminosity (1,) is some fraction f of the unbeamed luminosity: 

LT = l ,+Lj= l,+Plj= l,+Pfl,,=(l+f P)l, . ( 5 )  

The conditional probability function P ( L T  11,) can now be derived from P ( 6 )  (Eqn. 1) as before: . 

The integral is now done numerically and the results are shown in Figure3 (using the same jet and LF 
parameters as in Fig.2). The assumed intrinsic luminosity function (solid line) is indistinguishable 
from the intrinsic LF assumed in the calculation because only a small fraction of the parent objects are 
beamed into a small-angle cone about the line of sight. The dashed lines represent the LFs of the jet- 
dominated objects, by which we mean L j  > 1,. In other words, the critical angle separating "beamed" 
from "unbeamed" objects is where f P= 1. Each dashed line in Figure 3 corresponds to a different value 
of the jet fraction: f = O . O O l ,  0.01, 0.1, or 1.0. Of course, the critical angle €i,=~os-~[P-'(l-y-'f " P ) ]  is 
different for each of these values and the number of jet-dominated objects increases as f increases. 

Figure3 represents the expected LF for BLLac objects (in the beaming picture) when the parent 
LF is a simple power law with sharp cutoffs. In the next section we discuss possible complications intro- 
duced by more realistic assumptions about the jet properties and parent LF but for the moment let us 
examine the important features of the beamed LF. First, the observed BLLac LF has to be flatter than 
the observed LF for the parent objects. Second, the relative numbers observed depend on the lowest 
luminosity that is observable, (in effect the flux limit of each sample, given that the redshift distribu- 
tions are necessarily the same). Third, most of the observed BLLac objects will actually be the lowest 
luminosity parent objects. If the inevitable low luminosity turnover in the parent LF is not seen in 
current data, then the bulk of the observed BL Lacs are inherently parent objects have not even been seen, 
much less studied. This may make detailed comparisons - say of radio morphology, host galaxy 
characteristics, or polarization properties - very tricky. 

2.3 Effects of More Complicated LF/ Beaming Models 

We made several simplifying assumptions in calculating the luminosity functions in Figure 3. 
Almost certainly the real picture is more complicated but we already have a lot of free parameters (y, 
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f ,  p, 21, and f2, although the last three are constrained by the parent LF and so depend only on which 
parent population is under consideration). A s  pointed out in the Introduction, the luminosity functions 
of BLLac objects are anything but well-determined. Therefore we confine ourselves here to a qualita- 
tive discussion of how various likely refinements to the calculation will affect the observed, beamed LF. 

First, the assumption that all jets move at the same velocity is clearly too simple. (Indeed, though 
too little is known about the physics of the jets, the jet velocity is probably not even constant within a 
single jet. However, emission at a given frequency may come from a restricted part of the jet that has 
an approximately constant velocity so fixing y for each jet is less of a problem.) Suppose that there is a 
distribution of velocities among jets. It is easy to show that this has the effect of smoothing the sharp 
break in the beamed LF. Basically. as y increases, the plateau in the LF grows longer (the break 
moves toward higher luminosity) and the overall normalization is reduced, as shown in Figure4. Con- 
volving the 8 distribution with the y distribution would effectively mean adding different amounts of 
the three curves in Figure4, and the result would resemble their envelope. The LF would still be 
extremely flat at the low luminosity end, but at higher luminosities there would be a gradual steepening 
rather than a sharp break. 

A more serious objection to our simple model in 52.2 is that the low-luminosity cutoff in the 
parent LF is unlikely to be as sharp as we assumed. Again, specifying a more gradual cutoff would add 
more free parameters and is only reasonable when a specific (Le. observed) parent LF is involved. 
However, referring to Figure 1 it is easy to understand the effect of a gradual low-luminosity rollover in 
the parent LF. It can be approximated by a series of delta functions (6(1- 4)) below some I . .  Then the 
observed LF of beamed sources is a series of trapezoids from f i  to 8iax fi, each with slope (p+l)/p (as 
in Fig. 1). Below 6 iax l .  the beamed LF would still have a differential slope ( p + l ) l p  (unless 
p<(p+l)/p, in which case it would have slope p below 1.) and would connect smoothly to the beamed 
LF calculated for a sharp cutoff (Fig.2b). Thus the qualitative effect of a gradual rollover in the parent 
LF is negligible - the low-luminosity slope of the beamed LF is still very flat. Quantitatively it does 
miiiiei ii lot, since (1) beamed objects it'c doxiiiated by :he !owest !l;mt~osity parents, snd (2) :he ratio 
of beamed to unbeamed objects in a sample depends on the observed LF of both populations. 

. .  

3. Estimates of X-Ray and Optical Luminosity Functions of BL Lac Objects 

For reasons enumerated earlier, deriving an accurate luminosity function for BL Lac objects is 
currently impossible - there are no complete samples with enough redshift information. There do 
exist complete samples (e.g., Maccacaro et al. and Stickel et al., these proceedings) which, when red- 
shifts are fully measured, will permit the derivation of X-ray and radio luminosity functions. In the 
meantime we have made some crude estimates of the optical and X-ray luminosity functions based on 
currently available information. These may, and probably do, suffer horribly from incompleteness and 
selection biases (BLLacs being hard to find and redshifts being hard to measure), and so should not be 
taken as a measure of the true LF. Instead, they are lower limits to the true LF that represent the true 
shape of the LF only if the BLLacs with known redshifts are drawn in an unbiased way from the full 
BLLac population. (Since many redshifts come from absorption features in the host galaxy, the sam- 
ples used here may in fact be strongly biased toward low z.) 

We use a number of different techniques to estimate the BLLac LFs. The details of the calcula- 
tions are too lengthy to describe here (see Urry 1984 for more details) but our approaches include the 
following: 

(1) The V/V,,, method of Schmidt (1968), which is appropriate for complete, flux-limited samples. 
To derive the X-ray LF, we use the very small X-ray sample (- 5-6 objects) of Piccinotti et al. 
(1982), which has a known flux limit. For the optical LF, we assume a defacto flux limit, 
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following VBron (1979) but with a larger sample (basically all BLLacs with known redshifts, 
excluding the few high-redshift objects). 
A method described by Sramek and Weedman (1978) which uses the envelope of the Z - L  distri- 
bution. This was used by Schwartz and Ku (1983) in their estimate of the X-ray LF of BL Lac 
objects; we use additional redshift information and we apply the method to our optical sample as 
well. 
A new method in which, using only low-redshift objects (most BLLacs have low redshifts in any 
case), we require V/Vm,== 1/2. This has the advantage that one need not specify a flux limit, and 
extensive tests on other samples shows that it is an adequate estimator of the LF in the absence 
of evolution (Urry 1984). This is done for both X-ray and optical samples of as many BLLac 
objects as have measured [low] redshifts. 

The resulting luminosity functions are shown in Figure 5. The most obvious characteristic is that, 
as found by Vdron (1979) and Schwartz and Ku (1983). the LFs are quite flat. For both X-ray and opt- 
ical luminosity functions, the integral slope is -1 (with considerable uncertainty) and is distinctly flatter 
at the low-luminosity end. (This could obviously occur if we are missing the low-luminosity objects for 
some reason. In the beaming model, these are the objexts in which the unbeamed luminosity is com- 
parable to or greater than the beamed luminosity. possibly masking their BLLac-ness in a self- 
consistent way. Therefore this is a serious problem.) For whatever reason, the LFs in Figure 5 are cer- 
tainly flatter than is characteristic of other AGN like Seyfert galaxies and quasars, which tend to have 
integral slopes 22. Thus the estimates in Figure 5 are interesting, and certainly do not contradict the 
beaming model, but until better samples are available, we cannot say more. 

4. The Relation Between Luminosity Functions and Number Counts 

The analyses above are hampered largely by the lack of distance information, without which the 
luminosity and the volume of space probed are not known. Since fewer than one-third of the -100 
known BL Lac objects have measured redshifts, we really should work in number-flux space. Complete 
samples do give information about the number counts: lo@-logs curves for BLLacs have recently 
been derived from the Medium Sensitivity Survey (Stocke et al. 1988, and Maccacaro et al. , this meet- 
ing), and they are remarkably flat - much, much flatter than the corresponding counts for quasars, and 
flatter even than the Euclidean slope of -5/2. The same appears to be true of optical samples although 
they are less well defined (Woltjer and Setti 1982). This can occur when the slope of the underlying 
luminosity function is very flat. 

cussion of this by Shafer 1983.) Consider a uniform distribution of sources in infinite Euclidean space. 
The number of sources in a shell at distance r is 

Briefly, we describe the relation between luminosity function and lo@-logs. (There is a nice dis- 

L 
4x s Now, since r=(-)1'2,  we can express this in terms of flux through a change of variable: 

The quantity in brackets is just a normalization (depending on the number of objects) and so Equa- 
tion 8 gives the familiar "Euclidean law". Independent of the exact form of the luminosity function, the 
differential source counts will have slope - 9 2  as long as the source distribution is uniform throughout 
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infinite space. 
The counts are not Euclidean if the source distribution is not uniform. For example, sources can 

evolve. If their space density or average luminosity were higher in the past, then in general the counts 
steepen. This is why lo@-lo@ is usually steeper than Euclidean for quasars. It is important to note, 
however, that evolution produces less change in the counts when the slope of the luminosity function is 
flat (Cavaliere et al. 1983). Indeed the counts do not evolve at all when p= 1 (Cavaliere, Giallongo, 
and Vagnetti 1986). 

is finite. Let rmix be the distance to the edge of the spherical volume in which sources are distributed. 
The slope of the number counts also changes when the volume over which sources are distributed 

L mix 

4x rmrx  
There are two fluxes at which the finiteness of space would become apparent: S'= 7, the flux at 

L min 
which the most luminous object is at the furthest distance; and Smin= - , the smallest observable 

4x r z r x  

flux, corresponding to the least luminous source at the furthest distance. In qualitative terms, the 
effect of a spatial limit, rmixr is easy to see from Equation 8. For a LF with differential slope 2.5. the 
integral is proportional to L- '  and diverges logarithmically at both luminosity limits. For a steeper LF 
the low luminosity sources dominate, and so Smh is the flux at which the finiteness is manifested in the 
counts. That is, the counts will have a Euclidean slope down to the lowest flux (Smin) and then turn 
over abruptly. However, for a flatter LF the high luminosity objects dominate and S '  is where the 
counts begin to flatten. In fact, it is easy to show that for a LF with slope p< 2.5 and L,,,>> Lmh, the 
slope of loa- logs  for S< S'is p down to Smh, where the counts must roll over completely. 

buted, the counts flatten at relatively high fluxes, just as is observed. This is nearly equivalent to say- 
ing that flat counts imply negative evolution: either BLLacs werer dimmer in the past or there were 
fewer of them (a redshift cutoff). The flat luminosity function is required by beaming, as we showed 
above: t h e  finite volume could be a consequence of the relatively local distribution of the parent popu- 
lation (e.g. Fanaroff-Riley type I radio galaxies). Qualitatively, the agreement is excellent. Some prel- 
iminary work done in collaboration with Pa010 Padovani after the Como conference suggests that we 
can match both the number counts and the redshift distribution with a simple beaming model and no 
evolution. The following detailed calculation remains to be done: starting with the luminosity function 
of FRI galaxies, beaming some fraction of their total radio luminosity, then predicting the counts of 
beamed objects and fitting the observed lo@-logs and N ( 2 ) .  (Some spectral assumptions will have to 
go into the conversion between radio and X-ray bands.) 

Therefore, for a flat luminosity function and a finite volume over which BLLac objects are distri- 

5. Conclusions and Summary 

We showed that relativistic beaming leads naturally (and inexorably) to a flat LF, at least at the 
low luminosity end, independent of the form of the parent LF. The shapes of the parent LF and the 
beamed LF will be different, so that simply comparing ratios of volume densities (integrated over lumi- 
nosity) is not an appropriate way to test the beaming hypothesis. (Even if one uses unbeamed luminos- 
ity as a fiducial, selection effects will enhance the number of beamed objects and thus will potentially 
distort even the unbeamed properties of the sample.) Furthermore, the prediction of a flat LF is con- 
sistent with existing estimates of the BLLac LF (VBron 1979, Schwartz and Ku 1983, Urry 1984, and 
present paper), although such estimates are fraught with uncertainty. Much more reliable are the 
observed number counts, which are very flat (Woltjer and Setti 1982, Maccacaro et al. 1984); we 
showed that these can follow directly from a flat luminosity function and a finite spatial distribution. 
The observed counts (and partial redshift distribution) are qualitatively consistent with a model of 
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BLLac objects as beamed versions of local (z 50.5) low-luminosity radio galaxies, or as beamed ver- 
sions of any parent population that does not evolve. 
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Figure 1. The obrerved luminosity function when 
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are normalized to 10 and the ordinate is the integral 
LF L / l o x  Qb(L / l o ) ,  normalized to the total number 
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these parameters &= 35.3O. 
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Figure 2. The observed luminosity function when 
jets have m intrinsic power-law LF (solid line) with 
ditrerential slope 812.75 and sharp upper and lower 
cutoffs (Eqn.4). The beamed LF (all angles) is the 
dot-dash line in panel (a); the beamed LF separated 
where 6= 1 is shown in panel (b). As before, y=5, 
p=4, and 9,=35.3". 
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Figure 3. Total luminosity functions for jet- 
dominated (BLLac) objects and non-jet-dominated 
(parent) objects when the parent luminosity con- 
sists of a beamed jet plus an unbeamed. isotropic 
component. The intrinsic jet luminosity is assumed 
to be a k e d  fraction f of the unbeamed luminos- 
ity, and the beamed LFs for four different values of 
f are plotted (dashed lines). The solid line 
represents the non-jet-dominated LFs; on this scale 
these LFs for different f are indistinguishable from 
one another or from the intrinsic LF assumed. In 
contrast to Figs. 1 and 2, the critical angle 8, is 
now defined as the angle for which the observed jet 
and unbeamed luminosities are equal. Obviously 
more and more objects appear beamed (because 8, 
increases) as the fraction f increases. 
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Figure 4. The effect of jet Lorentz factor y on the 
observed beamed luminosity function. The three 
curves represent observed integral beamed LFs 
derived from a single-component (jets only) parent 
LF (i3=2.75 and p=4) using three different values 
of Lorentz factor: y=2. 5. and 10. Note that the 
critical angle decreases with increasing y ,  so fewer 
beamed objects are expected for high jet velocities; 
however, at high luminosities they vastly out- 
number the beamed objects with low-velocity jets. 

X-RAY LUMINOSITY FUNCTION FOR 
EL LACERTAE OWECTS 
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Figure 5. Estimated luminosity functions for known BLLac objects with redshifts. The methods and samples 
were discussed in detail by Urry (1984); newer calculations using the same techniques but the somewhat 
different BLLac catabg of Burbidge and Hewitt (1987) are not perceptibly different, especially given the large 
uncertain ties. 
(a) Optical LF. Squures - V/V,, method of Schmidt (1968) for 13 local ( I <  0.07) objects (solid squares) and 
20 nearby (z< 0.4) objects (open squares). Circks - V,,r 2 method for the same two sampks. Line - 
Envelope method of Sramek and Weedman (1978). The solid line represents the luminosity range for which 
the envelope is defined; the dashed line is an extrapolation. 
(b) X-ray LF. Symbols are the same as above except as noted. Shaded squares - Five objects from the Picci- 
notti cr uf. (1982) sample, with no correction for incompkteness. Open -on& - results of Schwartz and Ku 
(1983). derived from a similar sample (compare to solid line). 
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QUESTIONS 

J .  Ostriker: The beaming will bring up to detectability faint and relatively more common objects 
but it does not affect the host galaxy. Thus we are forced to multiply the number of 
BL Lac host objects by a factor of lo4 for beaming with additional corrections for 
incompleteness, etc. You may exceed the density of local radio giant ellipticals. 

Yes, I should have said explicitly in m y  talk that both you and Ian Browne used 
unbeamed power (host galaxy brightness and extended radio power, respectively) to do 
the population statistics, in which case the method outlined here is not relevant. (Of 
course, for well-defined, flux-limited samples, it is necessary since one is then looking 
at the total [beamed plus unbeamed] flux.) Now, if every BLLac is in the most lumi- 
nous giant elliptical galaxy and it is beamed with y-23 (for 0-l/y-2.S0). as you sug- 
gested in your talk, then I agree there may indeed be a problem. 

M .  Urry: 

T .  Muccucuro: 

M .  Urry: 

Which kind of redshift distribution do you predict from integration of your best lumi- 
nosity function? 

I have not done this yet because prior to this meeting there was no well-determined 
lo@-logs to fit and of course there are many  free parameters (e.g. .  parent luminosity 
function, Lorentz factor of the jet, fraction of unbeamed luminosity in the jet, etc.). 
Now that you and also Paolo Giommi have reported a detailed lo@-logs from X-ray 
flux-limited samples, it becomes an important exercise. Your talk suggested that it will 
be hard to produce the observed redshift distribution without a cutoff at 2 - 0 3  - it 
will be interesting to see if this changes materially because of the two-power-law lumi- 
nosity function or, even better, to see if we can do it self-consistently, taking the red- 
shift distribution and luminosity function of a suggested parent population like the FRI 
gdaxies, beaning s f i c  fi8GiGn of :he ! imk~si:y at random angles on the sky, and 
producing an observed loa- logs and N ( 2 )  that match what you and Giommi and 
Stickel observe. Obviously this is a strong test of the beaming model. (Note added 
several months after the meeting: Paolo Padovani and I have done some preliminary 
work on this project, and we think it will not be difficult to produce the observed flat 
counts and apparent redshift cutoff at 2-0.5 with a beamed luminosity function and no 
evolution in the parent population.) 

B .  Wills: As I mentioned before (after the Maccacaro and Stocke talks), the optical synchrotron 
component may have a very steep spectrum so when one defines the sample by optical 
characteristics, these objects may be missing at high redshift, i.e. at short rest 
wavelengths, where the synchrotron component is weak. 
This effect is accounted for in our picture (it appears as the a in the exponent of the 
boosting factor, 63+a, which we parametrize more simply as 6P) as long as the spec- 
trum is a single power law over the full spectral range of interest, i.e. for observations 
at frequency vo, the power law must extend from vd6 to vg( l + r ) / 6 ,  where 1 <6<6,,,. 
If the spectrum is curved, then additional selection effects are of course present. 

M .  Urry: 


